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ABSTRACT 

The recent applications of real options theory in environmental policy issues have 

illustrated the importance of explicitly modeling uncertainty and irreversibility in this 

type of problems. Within this framework, this paper explores the optimal timing of 

environmental policies when either the stock of pollutant or future economic costs 

caused by climate changes, are subject to normal as well as irregular changes. We 

assume that the stochastic evolution of these state variables is well described by a 

jump diffusion process and we examine alterations in optimal policies induced by the 

presence of discontinuities.  
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1. Introduction 

In modern developed societies, environmental issues are considered as of utmost 

priority. It is widely argued that the threat of environmental damages has mainly 

aroused due to human activities1. One of these threats is caused by the concentration 

of harmful substances in the atmosphere, such as CO2 gases, which are held 

responsible for the green house effect.  According to the United Nations, the impacts 

of global climate change include: increase in global warming of about 1.4 to 5.8°C 

between 1990 and 2100 as predicted by current climate models, increase in the sea 

level of 9 - 88 cm by the year 2100, causing flooding of low-lying areas, increase in 

the magnitude of droughts and floods. As a result lives and livelihoods of human 

populations in coastal areas, arid and semi-arid areas, and cyclone-prone regions will 

be particularly at risk and damages from unpredictable storms and extreme weather 

conditions will constitute high costs to society (source: UNFCCC).  

  

In recognition of this emerging environmental problem, governments have tried to 

coordinate on a global level in order to reduce the rate of emissions and minimize 

potential risks. The United Nations began a series of multilateral discussions in the 

late 1980s and early 1990s to address climate change. In 1992, these discussions 

culminated in the United Nations Framework Convention on Climate Change 

(UNFCCC), which was signed by 154 parties (or states). As part of its mandate, the 

UNFCCC initiated a negotiation process among nations seeking to solidify 

commitments to reduce the impacts of climate change. The negotiations culminated 

with the adoption of the Kyoto Protocol in December 1997. This phenomenon of 

                                                 
1 There are scientists who do not embrace this explanation. They claim, for instance, that the increase 
in the earth’s temperature is a natural phenomenon that repeats itself in the course of centuries.  
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societies manufacturing and managing risk can well be described by what the 

prominent sociologist Ulrich Beck (1992) has termed as “reflexive modernity”.  

 

Interestingly enough, in the last years has emerged a growing literature that applies 

optimal timing problems in environmental issues. More specifically, the question that 

is often addressed refers to the optimal point where societies should adopt a costly 

policy to reduce emissions of some environmental pollutant. Hitherto, the analysis of 

optimal environmental policies has been examined either by means of traditional cost- 

benefit analysis, or from the perspective of modern real options theory. The latter 

approach is superior to the former, since it takes explicitly into account three 

important characteristics of environmental problems, namely uncertainty, 

irreversibility and sunk costs and benefits. 

 

Within the framework of real options theory, and in particular to that proposed by 

Pindyck (2000, 2002), this paper examines the characteristics of optimal timing 

decisions related to the adoption of an environmental policy when there is a 

possibility of abnormal changes either in the evolution of the stock of pollutant, or in 

the future costs and benefits of environmental damage and its reduction. For example, 

large changes in the concentration of GHG, such as C02 gases, may appear during 

extreme winter or summers because of an increase in electricity consumption. On a 

regional basis, major accidents (e.g., fires in oil wells) could be held responsible for a 

sudden increase in the rate of C02 emissions. Regarding economic uncertainty, 
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temperature increase may cause sudden changes in earth’s climate with serious 

consequences on natural resources, agricultural output and land use2.  

 

To further support our hypothesis that the stock of pollutant can be subject to large 

changes we refer to the following incident. On October 11, 2004 the Independent 

reported that the atmospheric levels of carbon dioxide (CO2), the principal greenhouse 

gas, made a sudden jump that cannot be explained by any corresponding jump in 

terrestrial emissions of CO2 from power stations and motor vehicles—because there 

has been none. It was the first time the quantity of CO2 in the atmosphere had risen by 

more than two parts per million over two consecutive years. Some scientists believe 

the abrupt rise may be evidence of the climate change "feedback" mechanism, by 

which global warming alters the earth's natural systems causing warming to increase 

even faster than before, according to the report. The average rise in CO2 levels has 

been about 1.6 parts per million by volume in recent decades, although there have 

been several peaks associated with El Nino, a disruptive weather pattern in the 

tropical Pacific. However, in the last two years the level has risen by 2.08ppm and 

2.54ppm and neither were El Nino years.  

 

Other studies3 that apply real options methodology in continuous time include 

Saphores and Carr (2000), where they derive optimal policy rules when the stock of 

pollutant follows a square root mean reverting process. Hendricks (1992) develops a 

continuous-time model of global warming, similar to Pindyck (2002), and he 

examines the effects of learning when global mean temperature is linked to the 

                                                 
2 As mentioned also by Fisher and Narain (2003), others claim that the economic consequences will be 
modest, or even that the net impact of warming will be beneficial.  
3 For comprehensive literature reviews see Pindyck (2000) and Fisher and Narain (2003). 
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atmospheric GHG concentration. Finally, Conrad (1992) applies a model where the 

social cost of pollution and the stock of pollutant are connected via a parameter that 

evolves as a geometric Brownian motion.   

 

This paper is structured as follows. Section 2 examines optimal policies when the 

evolution of the stock of pollutant exhibits discontinuities; section 3 extends the 

analysis for the case where social cost per unit of stock of pollutant is allowed to rise 

sharply and finally section 4 concludes. 

 

2. Environmental Uncertainty  

We assume that the stock of pollutant, denoted by Mt, follows a gaussian mean 

reverting process augmented by jumps: 

 

 [ ]( ) ( )tdM E t M t dt dZ dqβ δ σ φ= − + +  (1) 

 

The jump part is controlled by compound Poisson process with parameter λ, and 

positive jump size φ. The jump size can be constant or drawn from a well-behaved 

distribution (e.g., exponential). For reasons of tractability we let φ to be a constant. 

The parameter E(t) is a flow variable that controls Mt, e.g., the rate of C02 emissions 

and the parameter δ stands for the natural rate at which the stock of pollutant decays 

over time. We assume that the flow of social cost associated with Mt is B(Mt, θt) and 

more specifically that B(Mt, θt), is convex in M, for example B(Mt, θt) = -θM2 . The 

parameter θ indicates the unit damage cost and is assumed to be constant. We do not 

examine linear forms of benefit functions since in such a case the optimal policy is 

independent from the evolution of the stock of pollutant (see Pindyck, 2000). We 
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assume that by incurring a fixed cost K, the rate of emissions drops to a new value E* 

and λ becomes zero. For simplicity, we set the sunk cost of an emission reduction, for 

both the diffusion and jump part, to be linear in the size of the reduction. Furthermore, 

we assume that emissions reduce to zero once a policy is adopted.  Thus, the cost of 

policy adoption to reduce emissions to zero is K1 = mE0 and E* = 0. In addition to that, 

the cost of policy adoption to reduce λ to zero is K2 = n λ. Therefore, the total cost is K 

= K1 + K2.  

 

The Bellman equations for the value functions WN and WA, in the no-adopt and adopt 

regions, respectively are: 

 

 [ ] 2 21 ( ) ( )
2

N NE M W W r W W M Mβ δ σ λ λ φ θΝ Ν
Μ ΜΜ− + − + + + =  (2) 

 2 21
2

A A AE M W W rW Mβ δ σ θ∗
Μ ΜΜ⎡ ⎤− + − =⎣ ⎦  (3) 

 
The value functions must satisfy the following boundary conditions: 

 

 (0) 0A
MW =  (4) 

 ( ) ( )N AW M W M K∗ ∗= −  (5) 

 ( ) ( )M A
N NW M W M∗ ∗=  (6) 

 

where M* is the critical value of M where policy should be applied.  

 

Following Pindyck (2000), the first condition just says that when M becomes zero, the 

value function at the adopt region should reach its maximum. The second condition is 

the value-matching; it says that when M reaches the critical level M* and society 

exercises its option to adopt the policy by incurring a sunk cost K, it receives the net 
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payoff WA (M*) – K. The third condition is the smooth-pasting; if adoption at M* is 

indeed optimal, the derivative of the value function must be continuous at M*.  

 

When δ>0, then the value function in the “no adopt area” can only be solved 

numerically. In order to obtain a closed form solution we assume that δ = 0, that is, 

the environmental damage is completely irreversible. Under this assumption the value 

function in the no adopt area is given by: 

 

 2 21 ( ) ( )
2

N NEW W r W W M Mβ σ λ λ φ θΝ Ν
Μ ΜΜ+ − + + + =  (7) 

 
The general solution to the above ODE is: 

 

 1 2
1 2

k M k MW C e C e= +  (8) 

 
where k1 and k2 satisfy the following characteristic equation: 

 

 2 21 ( ) 0
2

kk Ek r e φσ β λ λ+ − + + =  (9) 

 

Note that this equation can only be solved numerically. The particular solution of (7) 

is:  

 

 
2 2 2

2 3
( ) 2 ( )( )

p
rM rMW

r r
σ λφ θ θ β λφ β λφ+ + Ε + Ε + +

= − −  (10) 

 

and thus the solution in the “no adopt region” is given by:  
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1 2

2 2 2

1 2 2

3 3

( )

2 ( ) 2 ( )

k M k MN rMW C e C e
r

rM rM
r r

σ λφ θ

θβ β λφ θλφ β λφ

+ +
= + − −

Ε Ε + + Ε + +
−

 (11) 

 
The first two terms in equation (11) correspond to the value of the option to adopt the 

policy. The third term is the present value of the flow of social cost from the current 

stock of the pollutant, M, allowing M to evolve stochastically in the future. The fourth 

term stands for the present value of the flow of social cost, given that the emissions 

continued to evolve perpetually at a rate E. The fifth term is the present value of the 

flow of social cost, given that there is probability λ that the stock of pollutant will 

increase by φ.  

 

As previously mentioned, the first two terms on the right-hand side of equation (11) 

are the value of the option to adopt the policy. With k2 negative, as M tends to infinity, 

2k Me  tends to zero. However, it is impossible that the value of the option to adopt the 

policy becomes zero as M tends to infinity. Consequently, C2 should be zero.  

Therefore we obtain: 

 

 1

2 2 2

1 2 3
( ) 2 ( )( )( ) k MN rM rMW M C e

r r
σ λφ θ θ β λφ β λφ+ + Ε + Ε + +

= − −  (12) 

 

The value function in the adopt region is given by:  

 

 2 21
2

A A
MMW rW Mσ θ− =  (13) 

 

with the following solution: 
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2 2

2( )A MW M
r r

θ σ θ
= − −  (14) 

 
Given k1, C1 and M* can be found form the boundary conditions (5), (6) and the value 

function in the adopt area. 

 

From the smooth-pasting condition, we obtain: 

1

2

1
1

2 ( )

k M

E
rC

k e

β λφ θ
∗

+
=  

Substituting this expression for C1 into the value-matching condition, gives:  

1

1

2 2 2
2

2 3 2 2 2
1

2 ( ) 2 ( ) 2( ) ( )k M
k M

E e E K M E
r r r r rk e

β λφ θ σ λφ θ σ θβ λφ θ θ β λφ
∗

∗
∗+ +

− + − + + = +  

Solving for M*, we obtain: 

 

 
2 2

0
1 0 0

1 1 ( )
2( ) 2 ( )

KrM E
k r E E

λφβ λφ
β λφ θ β λφ

∗ = − + − +
+ +

 (15) 

 
For λ equal to zero equation (15) collapses to that of Pindyck (2000). As expected, the 

critical value M* is a decreasing function of both λ and φ. If the stock of pollutant is 

subject to large unexpected changes then policy adoption should be undertaken 

earlier. Furthermore, we observe that when we let the probability of a jump and/or the 

magnitude of the jump size to grow arbitrarily, then policy should be adopted 

immediately. For illustrative purposes we consider a numerical example, using for the 

continuous part the same values as those in Pindyck (2000). We set r=0.04, K=4, E0= 

0.3, β=1, θ=0.002, λ=0.1 and φ=0.07. The last two parameters stand for the jump part 

and can be interpreted as a probability of jump every 10 years that causes a 7% 

increase in the stock of pollutant. For σ=1 and σ=4, Pindyck (2000) finds that policy 
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should be adopted when 6.74M M ∗≥ =  and 16.21M M ∗≥ = , respectively. In the 

presence of jumps, policy should be adopted earlier when M*=6.59 and M*=16.02. For 

the more general case of δ>0 we can safely conclude that the level of M*, where 

policy should be adopted, will again be inversely related to parameters controlling the 

discontinuous part. 

 
So far we have considered the scenario where by adopting an environmental policy 

the probability of a jump drops to zero. However, this might be unrealistic so we will 

investigate two more general cases. In the first one, we assume that by incurring a 

fixed cost K, the rate of emissions drops again to zero but now λ drops to a new value 

λ*, greater than zero. The Bellman equations for the value functions WN and WA, in 

the no-adopt and adopt regions, respectively are: 

 

 2 21 ( ) ( )
2

N NEW W r W W M Mβ σ λ λ φ θΝ Ν
Μ ΜΜ+ − + + + =  

2 21 ( ) ( )
2

A A AW r W W M Mσ λ λ φ θ∗ ∗
ΜΜ − + + + =  

   

 
The value functions must satisfy the same boundary conditions. The solution in the 

“no adopt region” is given by (12).  

  

The solution of the value function in the adopt region is given by: 

  

 
2 2 2 * *

2 3
( ) 2 ( )( )A rM rMW M

r r
σ φ θ θλ φ λ φ+ + +

= − −  (16) 

 
The first term is the present value of the flow of social cost from the current stock of 

the pollutant, M, whereas the second term is the present value of the flow of social 

cost, given that there is probability λ* that the stock of pollutant will increase by φ.  
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Given k1, C1 and M* can be found form the boundary conditions (5), (6) and the value 

function in the adopt area. From the smooth-pasting condition, we obtain: 

1

*
2

1
1

2 ( )

k M

E
rC

k e

β λ λ φ θ
∗

⎡ ⎤+ −⎣ ⎦
=  

Substituting this expression for C1 into the value-matching condition and solving for 

M*, we obtain: 

  

 

2

*
1 0

2 2 2 2 *2 * 2
0 0

* *
0 0

1
2 ( )

( ) 21 ( )
( ) 2 ( )

KrM
k E

E E
r E E

θ β λ λ φ

β φ λ λ β λφ λ λ φ
β λ λ φ β λ λ φ

∗ = + −
⎡ ⎤+ −⎣ ⎦
+ − + −

−
⎡ ⎤ ⎡ ⎤+ − + −⎣ ⎦ ⎣ ⎦

 (17) 

 
Note that when λ* = 0, the above equation coincides with equation (15). In the second 

case, we assume that there is no change in the probability of a jump occurring, i.e. 

λ*=λ. Therefore, we obtain:  

 
2

0
1 0

1 1
2

KrM E
k E r

β
θβ

∗ = + −  (18) 

 

3. Economic Uncertainty with Jumps 

In this section we introduce economic uncertainty, denoted by θ, and we assume that 

is governed by a geometric Brownian motion augmented by jumps 

 

 d dt dZ dqθ αθ σθ φθ= + +  (19) 

 

Ecological uncertainty now follows a deterministic differential equation of the 

following form 

 

 ( ) ( ) ( )dM t dt E t M tβ δ= −  (20) 
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As in the case of environmental uncertainty, we assume that the jump part is 

controlled by a Poisson process with positive constant jump sizes. As in Pindyck 

(2000) we assume that the flow of social cost is a linear function of M and that the 

policy adoption implies reducing E from the initial level to zero with a cost K=kE0. 

Furthermore, we assume that the discontinuous part of the economic costs remains 

even after allowing for policy adoption.  

 
The value functions for the “no-adopt” (Et=E0) and the “adopt” region (Et=0) 

respectively, must satisfy the following Bellman equations: 

 

 
2

0
1( )
2

( , ) ( ( 1), )

N N N

N N

rW E M W W W

W W M

θ θθθ β δ αθ σ θ

λ θ λ θ φ

Ν
Μ= − Μ + − + +

− Μ + +
 (21) 

 

 
21

2
( , ) ( ( 1), )

A A A A

A A

rW MW W W

W MW M

θ θθθ δ αθ σ θ

λ θ λ θ φ

Μ= − Μ − + +

− Μ + +
 (22) 

 

subject to the boundary conditions: 

  

 
(0, ) 0

( , ) ( , )

( , ) ( , )

N

N A

W M

W M W M K

W M W Mθ θ

θ θ

θ θ

∗ ∗

Ν ∗ Ν ∗

=

= −

=

 (23) 

 

The first boundary condition states that zero is an absorbing barrier for θ, the second 

boundary is the value matching condition and the third the smooth pasting condition.   

 

The solution for the no adopt area is given by: 



 13

  

 ( ) 0,
( ) ( ( ))( ( ))

N EMW M A
r r r

γ β θθθ θ
δ α λφ α λφ δ α λφ

= − −
+ − + − + + − +

 (24) 

 

where γ is the solution to the following characteristic equation: 

 

 21 ( 1) ( ) (1 ) 0
2

r γσ γ γ αγ λ λ φ− + − + + + =  (25) 

 

The solution for the “adopt” area is given by 

 

 ( ),
( )
MW M

r
θθ

δ α λφ
Α = −

+ − +
 (26) 

 

The first term in (24) is the value of the option and the second term stands for the 

present value of the social cost caused by the current cost of pollutant. Compared to 

the solution with no jumps (λ=0) we observe that the present value of social costs is 

larger due to the fact that now θ has an expected rate of growth which is the sum of 

two terms; the drift of the continuous part and the expected jump size λφ, of the 

discontinuous part. Because the jump sizes are positive, the discount rate will be 

smaller. Again, for the same reason, the present value of the flow of social costs if 

emissions continued forever at a rate of E0 is larger. 

 

From the boundary conditions, the constant A and the value of θ* where policy should 

be adopted, are given by: 
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1

0
1

( )( )k r a r

γγγ β
λφ δ α λφ γ

− ⎡ ⎤−⎛ ⎞Α = Ε ⎜ ⎟ ⎢ ⎥− − + − −⎝ ⎠ ⎣ ⎦
 (27) 

 

 ( ( ))( ( )) /
1

k r a rγθ λφ δ α λφ β
γ

∗ ⎛ ⎞
= − + + − +⎜ ⎟−⎝ ⎠

 (28) 

 

The term θ∗ is a strictly decreasing function of both λ and φ. An increase in the 

probability of a large change in the future flow of social costs will cause 

environmental policies to be adopted earlier. An increase in the jump size will have a 

similar effect. In the case where the probability of the Poisson event and the size of 

the jump move to opposite directions, the change in θ∗ will depend on the magnitude 

of their relative changes. 

 

 

 

 

 

 

 

 

 

Figure 1: The optimal θ∗ implied by the jump diffusion and the diffusion case, respectively. 

 

We consider a numerical example, and for reasons of comparison we use the same 

parameters as in Pindyck (2000). We let α=0, r=0.04, δ=0.02, σ=0.2, β=1, E0=300,000 

tons/year, θ0= $20 per ton and k=6667 so that K=kΕ0=$2 billion. For the jump part we 

assume that λ=0.01 (jump every 100 years) and φ=0.3. For this particular values, 
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policy should be undertaken when θ∗= 29.87 as opposed to the diffusion case where 

the critical value is given by θ∗= 32. As it is illustrated in Figure 1, an increase in the 

jump probability to λ=0.05 (jump event every 20 years) shifts the critical value θ∗ to 

the right and therefore policy should be adopted earlier. 

 

4. Conclusions 

This paper has examined alternations in optimal policies induced by the presence of 

discontinuities either in the stock of pollutant or in the future economic costs caused 

by climate changes. We extended the analysis by Pindyck (2000) by allowing the state 

variables to follow jump diffusion processes. Sudden jumps in the concentration of 

CO2 in the atmosphere could be justified by the climate change "feedback" 

mechanism, as explained earlier in this paper. Neglecting the occurrence of jumps in 

the stock of pollutant could be misleading as to the optimal timing of environmental 

policy adoption. As expected, we find that when the stock of pollutant is subject to 

large changes, policy should be undertaken earlier. Similar results are obtained when 

the social cost per unit of stock of pollutant is allowed to rise sharply. Overall, the 

presence of discontinuities can account for a large part of the optimal environmental 

policy. Further research should concentrate on trying to obtain closed form solutions 

when the probability of a jump in social costs depends on the level of the stock of 

pollutant. In such a case, the discontinuous part could be modeled as a Poisson 

process with time varying intensity (Cox process type). We leave this issue for future 

research.  
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